organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,5-Bis[(E)-cyclopentylidene]thiocarbonohydrazide

Qingliang Guo,^a* Junshan Sun,^b Jikun Li,^b Rentao Wu^a and Wenzeng Duan^a

^aDepartment of Chemistry and Environmental Science, Taishan University, 271021 Taian, Shandong, People's Republic of China, and ^bDepartment of Materials and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China

Correspondence e-mail: xiangyz_2008@163.com

Received 26 December 2008; accepted 13 March 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.042; wR factor = 0.112; data-to-parameter ratio = 12.9.

In the title molecule, $C_{11}H_{18}N_4S$, an intramolecular $N-H\cdots N$ hydrogen bond $[N\cdots N = 2.558 (3)Å]$ is observed. The two cyclopentyl rings are disordered between two conformations in 1:1 and 2:1 ratios. In the crystal structure, weak intermolecular $N-H\cdots S$ hydrogen bonds $[N\cdots S = 3.547 (3) Å]$ link pairs of molecules into centrosymmetric dimers.

Related literature

For related Schiff base derivatives of thiocarbohydrazide, see: Bacchi *et al.* (1996); Chantrapromma *et al.* (2001).

Experimental

Crystal data	
$C_{11}H_{18}N_4S$ $M_r = 238.35$ Triclinic, $P\overline{1}$	a = 6.0344 (19) Å b = 10.114 (3) Å c = 11.137 (3) Å

$\alpha = 106.579 \ (5)^{\circ}$	
$\beta = 96.897 \ (5)^{\circ}$	
$\gamma = 100.574 \ (5)^{\circ}$	
$V = 629.6 (3) \text{ Å}^3$	
Z = 2	

Data collection

Bruker SMART APEX	3340 measured reflections
diffractometer	2212 independent reflections
Absorption correction: multi-scan	1673 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.013$
$T_{\min} = 0.972, T_{\max} = 0.986$	

Mo $K\alpha$ radiation $\mu = 0.24 \text{ mm}^{-1}$

 $0.12 \times 0.08 \times 0.06 \text{ mm}$

T = 273 K

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.042 & 53 \text{ restraints} \\ wR(F^2) &= 0.112 & H-\text{atom parameters constrained} \\ S &= 1.03 & \Delta\rho_{\text{max}} = 0.16 \text{ e } \text{ Å}^{-3} \\ 2212 \text{ reflections} & \Delta\rho_{\text{min}} = -0.17 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N3-H3\cdots N2$ $N1-H1\cdots S1^{i}$	0.86 0.86	2.17 2.70	2.558 (3) 3.547 (3)	108 170
			()	

Symmetry code: (i) -x - 1, -y + 1, -z + 1.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT* (Siemens, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors thank the Postgraduate Foundation of Taishan University for financial support (grant No. Y06-2-10).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2503).

References

- Bacchi, A., Bonini, A., Carcelli, M., Ferraro, F., Leporati, E., Pelizzi, C. & Pelizzi, G. (1996). J. Chem. Soc. Dalton. Trans. pp. 2699–2705.
- Chantrapromma, S., Razak, I. A., Fun, H.-K., Karalai, C., Zhang, H., Xie, F.-X., Tian, Y.-P., Ma, W., Zhang, Y.-H. & Ni, S.-S. (2001). Acta Cryst. C57, 289–290.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2009). E65, o818 [doi:10.1107/S1600536809009325]

1,5-Bis[(E)-cyclopentylidene]thiocarbonohydrazide

Q. Guo, J. Sun, J. Li, R. Wu and W. Duan

Comment

Thiocarbohydrazide and its Schiff base derivatives have attracted considerable interest in the chemistry of metal complexes containing nitrogen and donors (Bacchi *et al.*, 1996; Chantrapromma *et al.*, 2001]. The interest in this field may be attributed to the striking structural features in the resultant metal complexes and their biological activities. Herein we present the synthesis and crystal structure of the title compound.

The title compound is shown in Fig. 1. Two cyclopentanone rings are disordered between two conformations in the ratios 1:1 and 2:1, respectively. The four N atoms and the C=S are almost coplanar with the mean deviation of 0.024 (2) Å. In this molecule, there exist intramolecular N—H…N hydrogen bond (Table 1). Weak intermolecular N—H…S hydrogen bonds (Table 1) link two molecules into centrosymmetric dimers.

Experimental

A solution of cyclopentanone and thiocarbohydrazide in ethanol in the ratio of 2:1 were refluxed for 8 h with stirring and cooled to the room temperature. The yellow precipitated powder of title compound was filtered and washed with water and ethanol, and then air dried thoroughly. A crystal suitable for X-ray diffraction was obtained by evaporation from a DMF and ethanol mixture. The yield is 78% and elemental analysis: calc. for $C_{11}H_{18}N_4S$: C 55.43, H 7.61, N 23.51; found: C 55.26, H 7.49, N 23.88%. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II. The CCDC number: 695533.

Refinement

The H atoms were found in a difference map, then placed in idealized positions (C—H 0.97 Å, N—H 0.86 Å), and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C,N)$. Two cyclopentanone rings were treated as disordered between two conformations with the refined occupancies 0.533 (14):0.567 (14) and 0.661 (14):0.339 (14), respectively.

Figures

Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids. Only major parts of disordered rings are shown.

1,5-Bis[(E)-cyclopentylidene]thiocarbonohydrazide

Crystal data	
$C_{11}H_{18}N_4S$	Z = 2
$M_r = 238.35$	$F_{000} = 256$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.257 {\rm ~Mg~m}^{-3}$
<i>a</i> = 6.0344 (19) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 10.114 (3) Å	Cell parameters from 1126 reflections
c = 11.137 (3) Å	$\theta = 3.3 - 24.9^{\circ}$
$\alpha = 106.579 \ (5)^{\circ}$	$\mu = 0.24 \text{ mm}^{-1}$
$\beta = 96.897 (5)^{\circ}$	T = 273 K
$\gamma = 100.574 \ (5)^{\circ}$	Block, colourless
$V = 629.6 (3) \text{ Å}^3$	$0.12\times0.08\times0.06~mm$

Data collection

Bruker SMART APEX diffractometer	2212 independent reflections
Radiation source: fine-focus sealed tube	1673 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.013$
T = 273 K	$\theta_{\text{max}} = 25.1^{\circ}$
φ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 7$
$T_{\min} = 0.972, \ T_{\max} = 0.986$	$k = -12 \rightarrow 9$
3340 measured reflections	$l = -13 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0454P)^2 + 0.1999P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} < 0.001$
2212 reflections	$\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$
172 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
53 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Drimory atom site locations structure inversiont direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.009 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate(isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ Occ. (<1) \boldsymbol{Z} х y **S**1 0.0680(3)-0.52345(11)0.37097 (7) 0.62060(6) N1 -0.1552(3)0.56488 (18) 0.63675 (17) 0.0545 (5) H1-0.23340.5908 0.5814 0.065*N2 0.0700(3)0.63623 (19) 0.68996 (17) 0.0580(5)N3 -0.1013 (3) 0.42144 (18) 0.75435 (17) 0.0580(5)H3 0.0391 0.4685 0.7755 0.070* N4 -0.1709(3)0.3132(2)0.8044(2)0.0690(6) C1 -0.2498(4)0.4543 (2) 0.6730(2) 0.0509 (5) C2 0.1520(3)0.7462(2)0.6622(2)0.0517(5)C3 0.3930 (4) 0.8296 (3) 0.7198 (3) 0.0774 (8) H3A 0.4066 0.8764 0.8103 0.093* H3B 0.5000 0.7683 0.7077 0.093* C4 0.661 (14) 0.4395 (15) 0.9365 (9) 0.6511 (10) 0.074(2)H4A 0.5092 0.9002 0.5781 0.089* 0.661 (14) H4B 0.5411 0.7073 0.089* 1.0238 0.661 (14) C5 0.2064 (11) 0.9613 (7) 0.6089 (10) 0.073 (2) 0.661 (14) H5A 0.2052 0.9934 0.5347 0.088* 0.661 (14) H5B 0.1645 1.0312 0.088* 0.661 (14) 0.6768 C6 0.0426 (4) 0.8155 (2) 0.5770(2) 0.0603 (6) H6C -0.10830.8253 0.5943 0.072* 0.661 (14) H6B 0.0283 0.7611 0.4881 0.072* 0.661 (14) H6A -0.07010.8622 0.6154 0.072* 0.339 (14) H6D -0.03170.7467 0.4952 0.072* 0.339 (14) C4' 0.409(4)0.9642 (13) 0.6854 (17) 0.074(2)0.339(14)H4C 0.5632 0.9997 0.6742 0.089* 0.339 (14) H4D 0.3675 1.0367 0.7512 0.089* 0.339 (14) C5' 0.241(2)0.9226 (17) 0.5619 (16) 0.073(2)0.339 (14) H5D 0.3090 0.8804 0.4900 0.088* 0.339 (14) H5C 0.1901 1.0042 0.5496 0.088* 0.339 (14) C7 -0.0131(4)0.2930(2) 0.8792 (2) 0.0588 (6) C8 0.2329 (4) 0.3678 (2) 0.9211 (2) 0.0607 (6) H8C 0.467 (14) 0.2503 0.4631 0.9781 0.073* 0.467 (14) H8B 0.3050 0.3725 0.8487 0.073*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H8A	0.2478	0.4691	0.9564	0.073*	0.533 (14)
H8D	0.3131	0.3502	0.8497	0.073*	0.533 (14)
C9'	0.335 (2)	0.2757 (11)	0.9903 (7)	0.075 (3)	0.467 (14)
H9C	0.4080	0.2125	0.9337	0.090*	0.467 (14)
H9D	0.4496	0.3352	1.0638	0.090*	0.467 (14)
C10'	0.1445 (17)	0.1908 (17)	1.0324 (14)	0.079 (3)	0.467 (14)
H10A	0.1068	0.2460	1.1107	0.095*	0.467 (14)
H10B	0.1815	0.1049	1.0429	0.095*	0.467 (14)
C11'	-0.0457 (17)	0.1591 (6)	0.9191 (7)	0.070 (3)	0.467 (14)
H11C	-0.1947	0.1388	0.9428	0.083*	0.467 (14)
H11D	-0.0333	0.0784	0.8501	0.083*	0.467 (14)
C9	0.3302 (17)	0.3089 (6)	1.0216 (7)	0.0582 (18)	0.533 (14)
H9A	0.4817	0.2934	1.0116	0.070*	0.533 (14)
H9B	0.3374	0.3713	1.1070	0.070*	0.533 (14)
C10	0.1582 (12)	0.1699 (13)	0.9944 (14)	0.079 (3)	0.533 (14)
H10C	0.1655	0.1382	1.0689	0.095*	0.533 (14)
H10D	0.1894	0.0975	0.9242	0.095*	0.533 (14)
C11	-0.0769 (13)	0.1980 (11)	0.9599 (10)	0.066 (2)	0.533 (14)
H11A	-0.1893	0.1116	0.9111	0.079*	0.533 (14)
H11B	-0.1325	0.2467	1.0346	0.079*	0.533 (14)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0570 (4)	0.0775 (5)	0.0726 (4)	-0.0016 (3)	-0.0087 (3)	0.0472 (4)
N1	0.0521 (11)	0.0585 (11)	0.0601 (11)	0.0071 (9)	-0.0029 (9)	0.0385 (9)
N2	0.0501 (11)	0.0654 (12)	0.0667 (12)	0.0089 (9)	-0.0001 (9)	0.0407 (10)
N3	0.0523 (11)	0.0579 (11)	0.0695 (12)	0.0014 (9)	-0.0062 (9)	0.0425 (10)
N4	0.0609 (12)	0.0639 (12)	0.0878 (14)	-0.0038 (9)	-0.0116 (11)	0.0541 (11)
C1	0.0573 (13)	0.0515 (12)	0.0478 (12)	0.0109 (10)	0.0021 (10)	0.0257 (10)
C2	0.0464 (12)	0.0609 (13)	0.0560 (13)	0.0100 (10)	0.0036 (10)	0.0348 (11)
C3	0.0524 (15)	0.0933 (19)	0.0922 (19)	0.0008 (13)	-0.0100 (13)	0.0573 (16)
C4	0.056 (3)	0.070 (3)	0.095 (5)	-0.001 (2)	-0.002 (3)	0.040 (4)
C5	0.064 (3)	0.070 (3)	0.093 (6)	0.001 (3)	-0.003 (3)	0.051 (3)
C6	0.0490 (13)	0.0655 (14)	0.0756 (15)	0.0063 (11)	0.0003 (11)	0.0450 (13)
C4'	0.056 (3)	0.070 (3)	0.095 (5)	-0.001 (2)	-0.002 (3)	0.040 (4)
C5'	0.064 (3)	0.070 (3)	0.093 (6)	0.001 (3)	-0.003 (3)	0.051 (3)
C7	0.0535 (13)	0.0552 (13)	0.0716 (15)	0.0010 (10)	-0.0045 (11)	0.0398 (12)
C8	0.0552 (14)	0.0628 (14)	0.0701 (15)	0.0056 (11)	0.0030 (11)	0.0386 (12)
C9'	0.067 (6)	0.066 (4)	0.091 (5)	0.010 (4)	-0.020 (5)	0.038 (4)
C10'	0.082 (2)	0.082 (4)	0.077 (6)	-0.002 (2)	-0.014 (3)	0.056 (4)
C11'	0.059 (5)	0.060 (5)	0.105 (6)	0.008 (4)	0.004 (4)	0.058 (5)
C9	0.051 (4)	0.054 (3)	0.067 (3)	-0.001 (3)	-0.005 (3)	0.031 (3)
C10	0.082 (2)	0.082 (4)	0.077 (6)	-0.002 (2)	-0.014 (3)	0.056 (4)
C11	0.051 (3)	0.065 (4)	0.094 (4)	0.005 (3)	-0.003 (3)	0.055 (4)
Geometric	naramatars (Å °)					

 Geometric parameters (A, °)

 S1—C1
 1.660 (2)
 C4'—H4D
 0.9700

N1—C1	1.349 (3)	C5'—H5D	0.9700
N1—N2	1.386 (2)	C5'—H5C	0.9700
N1—H1	0.8600	С7—С8	1.488 (3)
N2—C2	1.268 (3)	C7—C11	1.523 (4)
N3—C1	1.349 (3)	C7—C11'	1.528 (4)
N3—N4	1.386 (2)	C8—C9	1.518 (5)
N3—H3	0.8600	C8—C9'	1.532 (6)
N4—C7	1.273 (3)	C8—H8C	0.9700
C2—C6	1.492 (3)	C8—H8B	0.9700
C2—C3	1.502 (3)	C8—H8A	0.9700
C3—C4	1.498 (5)	C8—H8D	0.9700
C3—C4'	1.505 (7)	C9'—C10'	1.507 (7)
С3—НЗА	0.9700	С9'—Н9С	0.9700
С3—Н3В	0.9700	С9'—Н9D	0.9700
C4—C5	1.517 (6)	C10'—C11'	1.516 (7)
C4—H4A	0.9700	C10'—H10A	0.9700
C4—H4B	0.9700	C10'—H10B	0.9700
C5—C6	1.536 (5)	C11'—H11C	0.9700
С5—Н5А	0.9700	C11'—H11D	0.9700
С5—Н5В	0.9700	C9—C10	1.513 (7)
C6—C5'	1.520 (7)	С9—Н9А	0.9700
С6—Н6С	0.9700	С9—Н9В	0.9700
С6—Н6В	0.9700	C10-C11	1.523 (7)
С6—Н6А	0.9700	C10—H10C	0.9700
C6—H6D	0.9700	C10—H10D	0.9700
C4'—C5'	1.509 (8)	C11—H11A	0.9700
C4'—H4C	0.9700	C11—H11B	0.9700
C1—N1—N2	119.09 (16)	C8—C7—C11	109.8 (3)
C1—N1—H1	120.5	N4—C7—C11'	121.1 (4)
N2—N1—H1	120.5	C8—C7—C11'	107.8 (4)
C2—N2—N1	118.56 (17)	C11—C7—C11'	22.1 (4)
C1—N3—N4	121.17 (18)	С7—С8—С9	106.2 (4)
C1—N3—H3	119.4	C7—C8—C9'	103.3 (5)
N4—N3—H3	119.4	C9—C8—C9'	15.73 (7)
C7—N4—N3	114.60 (18)	С7—С8—Н8С	111.1
N1—C1—N3	113.33 (19)	С9—С8—Н8С	96.0
N1—C1—S1	121.64 (15)	C9'—C8—H8C	111.1
N3—C1—S1	125.03 (16)	С7—С8—Н8В	111.1
N2—C2—C6	129.81 (19)	С9—С8—Н8В	122.3
N2—C2—C3	120.75 (18)	С9'—С8—Н8В	111.1
C6—C2—C3	109.43 (18)	H8C—C8—H8B	109.1
C4—C3—C2	105.4 (4)	С7—С8—Н8А	110.4
C4—C3—C4'	18.5 (10)	С9—С8—Н8А	110.6
C2—C3—C4'	104.6 (8)	С9'—С8—Н8А	125.1
C4—C3—H3A	110.7	H8C—C8—H8A	15.7
С2—С3—Н3А	110.7	H8B—C8—H8A	95.6
C4'—C3—H3A	94.4	C7—C8—H8D	110.5
C4—C3—H3B	110.7	C9—C8—H8D	110.5
С2—С3—Н3В	110.7	C9'—C8—H8D	97.9

supplementary materials

C4'—C3—H3B	126.4	H8C—C8—H8D	120.9
НЗА—СЗ—НЗВ	108.8	H8B—C8—H8D	14.4
C3—C4—C5	105.0 (6)	H8A—C8—H8D	108.6
C3—C4—H4A	110.7	C10'—C9'—C8	108.7 (10)
С5—С4—Н4А	110.7	С10'—С9'—Н9С	110.0
C3—C4—H4B	110.7	С8—С9'—Н9С	110.0
C5—C4—H4B	110.7	C10'—C9'—H9D	110.0
H4A—C4—H4B	108.8	C8—C9'—H9D	110.0
C4—C5—C6	104.0 (6)	H9C—C9'—H9D	108.3
С4—С5—Н5А	111.0	С10'—С9'—Н9А	131.9
С6—С5—Н5А	111.0	С8—С9'—Н9А	117.9
C4—C5—H5B	111.0	Н9С—С9'—Н9А	65.5
С6—С5—Н5В	111.0	H9D—C9'—H9A	43.5
H5A—C5—H5B	109.0	С10'—С9'—Н9В	80.7
C2—C6—C5'	104.2 (7)	С8—С9'—Н9В	91.0
C2—C6—C5	104.2 (3)	Н9С—С9'—Н9В	150.6
C5'—C6—C5	24.2 (6)	H9D—C9'—H9B	43.3
С2—С6—Н6С	110.9	Н9А—С9'—Н9В	86.8
С5'—С6—Н6С	130.4	C9'—C10'—C11'	99.5 (13)
С5—С6—Н6С	110.9	C9'—C10'—H10A	111.9
С2—С6—Н6В	110.9	C11'—C10'—H10A	111.9
С5'—С6—Н6В	89.0	C9'—C10'—H10B	111.9
С5—С6—Н6В	110.9	C11'-C10'-H10B	111.9
Н6С—С6—Н6В	108.9	H10A—C10'—H10B	109.6
С2—С6—Н6А	110.9	C10'—C11'—C7	105.3 (9)
С5'—С6—Н6А	110.9	C10'-C11'-H11C	110.7
С5—С6—Н6А	89.0	C7—C11'—H11C	110.7
Н6С—С6—Н6А	23.3	C10'—C11'—H11D	110.7
H6B—C6—H6A	126.6	C7—C11'—H11D	110.7
C2—C6—H6D	110.9	H11C—C11'—H11D	108.8
C5'—C6—H6D	110.9	С10—С9—С8	102.2 (8)
C5—C6—H6D	130.4	С10—С9—Н9А	111.1
H6C—C6—H6D	88.2	С8—С9—Н9А	111.4
H6B—C6—H6D	23.2	С10—С9—Н9В	111.3
H6A—C6—H6D	108.9	С8—С9—Н9В	111.4
C3—C4'—C5'	104.6 (11)	Н9А—С9—Н9В	109.3
C3—C4'—H4C	110.8	C9—C10—C11	106.4 (11)
C5'—C4'—H4C	110.8	C9—C10—H10C	110.5
C3—C4'—H4D	110.8	C11—C10—H10C	110.5
C5'—C4'—H4D	110.8	C9—C10—H10D	110.5
H4C—C4'—H4D	108.9	C11—C10—H10D	110.5
C4'—C5'—C6	104.2 (12)	H10C-C10-H10D	108.7
C4'—C5'—H5D	110.9	C7—C11—C10	98.5 (8)
C6—C5'—H5D	110.9	C7—C11—H11A	112.1
C4'—C5'—H5C	110.9	C10—C11—H11A	112.1
C6—C5'—H5C	110.9	C7—C11—H11B	112.1
H5D—C5'—H5C	108.9	C10—C11—H11B	112.1
N4—C7—C8	129.96 (18)	H11A—C11—H11B	109.7
N4—C7—C11	119.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N3—H3…N2	0.86	2.17	2.558 (3)	108
N1—H1···S1 ⁱ	0.86	2.70	3.547 (3)	170
Symmetry codes: (i) $-x-1, -y+1, -z+1$.				

